What is a Computer? The Nuts and Bolts of Computation

Carlotta Pavese

10.10

<ロ> <同> <同> <同> < 同>

- < ≣ →

Outline

Introduction

Boolean Logic

Boolean Circuits

Carlotta Pavese What is a Computer?

・ロン ・回 と ・ ヨン ・ ヨン

Outline

Introduction

Boolean Logic

Boolean Circuits

Carlotta Pavese What is a Computer?

・ロン ・四と ・ヨン ・ヨン

W. Daniel Hillis

Cast of Characters

(American)

A (1) > (1) > (1)

Claude Shannon

Cast of Characters

(American, 1916-2001)

- BS in Math & Electrical Engineering from University of Michigan
- MS in Electrical Engineering and PhD in Math at MIT
- Mathematician, electrical engineer & cryptographer
- The father of Information Theory

< 1[™] >

 Did foundational work on digital computers and digital circuits using work by George Boole

George Boole Cast of Characters

(British, 1815-1864)

- Self-educated mathematician and philosopher
- Opened his own school at 19
- Professor at Queen's University (Ireland)
- In 1854 authored An Investigation of the Laws of Thought
- Discovered algebraic parallels between arithmetic and logic (Boolean Algebra)

These parallels are one of the foundational insights that

do the digital computer possible Carlotta Payese What is a Computer?

The Mind-Body Question (Abstract, Philosophical)

- Is the mind part of the body?
- Is it separable? If so, how does it interact?

Where are we? The Mind-Body Question

The Mind-Body Question (Abstract, Philosophical)

- Is the mind part of the body?
- Is it separable? If so, how does it interact?

Further Questions (Particular, Psychological)

- What are these things (thought, experience, emotion) that the mind does?
- How does it do them?

Where are we? Trying to Answer the Mind-Body Question

Criterion 1

Connect mind and brain more closely than Dualism

Illustrated by 'interaction' problem

A (1) > A (1) > A

- ∢ ⊒ ⊳

Where are we? Trying to Answer the Mind-Body Question

Criterion 1

Connect mind and brain more closely than Dualism

Illustrated by 'interaction' problem

Criterion 2

Connects mind and brain less closely than Identity Theory

Illustrated by the 'multiple realization' problem

Where are we? Trying to Answer the Mind-Body Question

Criterion 1

Connect mind and brain more closely than Dualism

Illustrated by 'interaction' problem

Criterion 2

Connects mind and brain less closely than Identity Theory

Illustrated by the 'multiple realization' problem

Criterion 3

Connect mind more closely than Behaviorism to internal psychology and working of the brain, without circularity

個 と く ヨ と く ヨ と …

Functionalism

An Answer to the Mind-Body Question

Functionalism

1. The mind is what the brain does

Functionalism is Not Enough

Functionalism doesn't answer our further questions: what does the brain do, and how?

Functionalism

An Answer to the Mind-Body Question

Functionalism

- 1. The mind is what the brain does
- 2. Pain is identified by what in the environment and body cause it, what other mental states it leads to and what kind of behavior it leads to

Functionalism is Not Enough

Functionalism doesn't answer our further questions: what does the brain do, and how?

Functionalism

An Answer to the Mind-Body Question

Functionalism

- 1. The mind is what the brain does
- 2. Pain is identified by what in the environment and body cause it, what other mental states it leads to and what kind of behavior it leads to
 - Mind-body problem is addressed, Chauvinism avoided

Functionalism is Not Enough

Functionalism doesn't answer our further questions: what does the brain do, and how?

Where are we? From Functionalism to Computation

We need an account of what the brain does that:

1. Is not Chauvinist

- 4 回 2 - 4 □ 2 - 4 □

Where are we? From Functionalism to Computation

We need an account of what the brain does that:

- 1. Is not Chauvinist
- 2. But can account for the things the brain does (see, think, feel, etc.)

Computation as the Answer

Maybe brains, like your laptops, compute

Where are we? From Functionalism to Computation

We need an account of what the brain does that:

- 1. Is not Chauvinist
- 2. But can account for the things the brain does (see, think, feel, etc.)

Computation as the Answer

Maybe brains, like your laptops, compute

But what is computation?

Where are we? From Functionalism to Computation

We need an account of what the brain does that:

- 1. Is not Chauvinist
- 2. But can account for the things the brain does (see, think, feel, etc.)

Computation as the Answer

Maybe brains, like your laptops, compute

- But what is computation?
- How does it avoid Chauvinism? Can seeing, thinking, feel, etc. really arise from computation?

Outline

Introduction

Boolean Logic

Boolean Circuits

Carlotta Pavese What is a Computer?

・ロン ・四と ・ヨン ・ヨン

Boolean Logic

Introduction

An Investigation of the Laws of Thought, p.1

"The design of the following treatise is to investigate the fundamental laws of those operations of the mind by which reasoning is performed."

・ 同 ト ・ 三 ト ・ 三 ト

Introduction

An Investigation of the Laws of Thought, p.1

"The design of the following treatise is to investigate the fundamental laws of those operations of the mind by which reasoning is performed."

An Investigation of the Laws of Thought, p.6

"It is designed... to give expression... to the fundamental laws of reasoning in the symbolical language of a Calculus...

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

An Investigation of the Laws of Thought, p.1

"The design of the following treatise is to investigate the fundamental laws of those operations of the mind by which reasoning is performed."

An Investigation of the Laws of Thought, p.6

"It is designed... to give expression... to the fundamental laws of reasoning in the symbolical language of a Calculus... There is not only a close analogy between the operations of the mind in general reasoning and its operations in the particular science of Algebra,

- 4 回 2 - 4 □ 2 - 4 □

Introduction

An Investigation of the Laws of Thought, p.1

"The design of the following treatise is to investigate the fundamental laws of those operations of the mind by which reasoning is performed."

An Investigation of the Laws of Thought, p.6

"It is designed... to give expression... to the fundamental laws of reasoning in the symbolical language of a Calculus... There is not only a close analogy between the operations of the mind in general reasoning and its operations in the particular science of Algebra, there is a to a considerable extent an exact agreement in the laws by which the two classes of operations are conducted."

Boolean Logic The Basics

• Algebra:
$$(x + y) + z = x + (y + z)$$

Carlotta Pavese What is a Computer?

Boolean Logic The Basics

• Algebra:
$$(x + y) + z = x + (y + z)$$

Variables x, y, z can be any number

Boolean Logic The Basics

- Algebra: (x + y) + z = x + (y + z)
 - Variables x, y, z can be any number
 - $+, \times, -$, etc. operate on numbers

(4回) (4回) (日)

Boolean Logic The Basics

- Algebra: (x + y) + z = x + (y + z)
 - ► Variables *x*, *y*, *z* can be any number
 - $+, \times, -$, etc. operate on numbers
 - There are rules for correct calculation

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Boolean Logic The Basics

- Algebra: (x + y) + z = x + (y + z)
 - ► Variables *x*, *y*, *z* can be any number
 - ► +,×, -, etc. operate on numbers
 - There are rules for correct calculation
- Boolean Logic: $(A \land B) \land C = A \land (B \land C)$

◆□→ ◆ □→ ◆ □→

Boolean Logic The Basics

- Algebra: (x + y) + z = x + (y + z)
 - ► Variables *x*, *y*, *z* can be any number
 - ► +,×, -, etc. operate on numbers
 - There are rules for correct calculation
- Boolean Logic: $(A \land B) \land C = A \land (B \land C)$
 - ► Variables A, B, C can be any true/false claim

・ 同 ト ・ 三 ト ・ 三 ト

- Algebra: (x + y) + z = x + (y + z)
 - Variables x, y, z can be any number
 - ► +,×, -, etc. operate on numbers
 - There are rules for correct calculation
- Boolean Logic: $(A \land B) \land C = A \land (B \land C)$
 - ► Variables A, B, C can be any true/false claim
 - \land, \lor, \neg operate on truth/falsity of claims

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Algebra: (x + y) + z = x + (y + z)
 - Variables x, y, z can be any number
 - ► +, ×, −, etc. operate on numbers
 - There are rules for correct calculation
- Boolean Logic: $(A \land B) \land C = A \land (B \land C)$
 - Variables A, B, C can be any true/false claim
 - \land, \lor, \neg operate on truth/falsity of claims
 - There are rules for correct reasoning

・ 同 ト ・ 三 ト ・ 三 ト

Boolean Logic

The Boolean Connectives

Negation (\neg) : Not

A	¬A
TRUE	FALSE
FALSE	TRUE

Conjunction (\wedge): And				
A	B	$A \wedge B$		
TRUE	TRUE	TRUE		
TRUE	FALSE	FALSE		
FALSE	TRUE	FALSE		
FALSE	FALSE	FALSE		
		Carlotta Pavese		

Disjunction (\lor): Or			
A	B	$A \lor B$	
TRUE	TRUE	TRUE	
TRUE	FALSE	TRUE	
FALSE	TRUE	TRUE	
FALSE	FALSE	FALSE	

- ▶ ¬ flips truth/falsity
- \blacktriangleright \land takes worstvalue
- V takes bestvalue

What is a Computer?

< 口 > < 回 > < 回 > < 回 > < 回 > <

3

The Analogy With Arithmetic Grouping Can Matter

- Different groupings w/parentheses in can yield different truth value
 - This is just like orders of operation in arithmetic:

The Analogy With Arithmetic Grouping Can Matter

- Different groupings w/parentheses in can yield different truth value
 - This is just like orders of operation in arithmetic:
 - ▶ 2+(3×4) = 14
 - ▶ (2+3) × 4 = 20
 - Different!

・日・ ・ ヨ・ ・ ヨ・

2

The Analogy With Arithmetic Grouping Can Matter

- Different groupings w/parentheses in can yield different truth value
 - This is just like orders of operation in arithmetic:

 - ► $(2+3) \times 4 = 20$ ► $(A \land B) \lor C$
 - Different!

Different!

・ 回 と ・ ヨ と ・ ヨ と …

2

The Analogy With Arithmetic Grouping Can Matter

- Different groupings w/parentheses in can yield different truth value
 - This is just like orders of operation in arithmetic:

▶
$$2 + (3 \times 4) = 14$$
 ► $A \land (B \lor C)$

►
$$(2+3) \times 4 = 20$$
 ► $(A \land B) \lor C$

Different!

Different!

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

- ► -(2+3) = -5
- ► -2+3=1
- Different!
The Analogy With Arithmetic Grouping Can Matter

- Different groupings w/parentheses in can yield different truth value
 - This is just like orders of operation in arithmetic:

•
$$2 + (3 \times 4) = 14$$
 • $A \wedge (B \vee C)$

►
$$(2+3) \times 4 = 20$$
 ► $(A \land B) \lor C$

- Different! Different!
- ► -(2+3) = -5
- ► -2+3=1

- ► ¬(A ∧ B)
- $\neg A \land B$

Different!

Different!

・回 ・ ・ ヨ ・ ・ ヨ ・ …

3

А	В	C	$(A \land B) \lor C$
TRUE	TRUE	TRUE	TRUE
TRUE	TRUE	FALSE	TRUE
TRUE	FALSE	TRUE	TRUE
TRUE	FALSE	FALSE	FALSE
FALSE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	FALSE
FALSE	FALSE	TRUE	TRUE
FALSE	FALSE	FALSE	FALSE

Illustration

А	В	C	$A \wedge (B \lor C)$
TRUE	TRUE	TRUE	TRUE
TRUE	TRUE	FALSE	TRUE
TRUE	FALSE	TRUE	TRUE
TRUE	FALSE	FALSE	FALSE
FALSE	TRUE	TRUE	FALSE
FALSE	TRUE	FALSE	FALSE
FALSE	FALSE	TRUE	FALSE
FALSE	FALSE	FALSE	FALSE

The Analogy With Arithmetic

Sometimes Grouping Doesn't Matter

But, sometimes grouping does not matter:

A (1) > A (1) > A

The Analogy With Arithmetic

Sometimes Grouping Doesn't Matter

- But, sometimes grouping does not matter:
 - + is associative:
 - ▶ 2 + (3 + 4) = 9
 - ▶ (2+3)+4=9
 - Same!

・同・ ・ヨ・ ・ヨ・

The Analogy With Arithmetic

Sometimes Grouping Doesn't Matter

- But, sometimes grouping does not matter:
 - + is associative: \wedge is too:
 - ▶ 2 + (3 + 4) = 9
 - ▶ (2+3)+4 = 9
 - Same!

- $\bullet A \land (B \land C)$
- $(A \land B) \land C$

・日・ ・ヨ・ ・ヨ・

Same!

The Analogy With Arithmetic

Sometimes Grouping Doesn't Matter

- But, sometimes grouping does not matter:
 - + is associative: \wedge is too:
 - ▶ 2 + (3 + 4) = 9
 - ▶ (2+3)+4 = 9
 - Same!

- $A \wedge (B \wedge C)$
- (A ∧ B) ∧ C
 Same!

・日・ ・ヨ・ ・ヨ・

- \blacktriangleright × is associative:
 - $\blacktriangleright 2 \times (3 \times 4) = 24$
 - $\blacktriangleright (2 \times 3) \times 4 = 24$
 - Same!

The Analogy With Arithmetic

Sometimes Grouping Doesn't Matter

- But, sometimes grouping does not matter:
 - + is associative: \wedge is too:
 - ▶ 2 + (3 + 4) = 9
 - ▶ (2+3)+4 = 9
 - Same!

- A ∧ (B ∧ C)
 (A ∧ B) ∧ C
 - ► Same!
- \blacktriangleright × is associative: \blacktriangleright V is too:
 - $\blacktriangleright 2 \times (3 \times 4) = 24$
 - $(2 \times 3) \times 4 = 24$
 - Same!

- $A \lor (B \lor C)$
- $(A \lor B) \lor C$

・日・ ・ ヨ・ ・ ヨ・

2

Same!

А	В	C	$A \lor (B \lor C)$
TRUE	TRUE	TRUE	
TRUE	TRUE	FALSE	
TRUE	FALSE	TRUE	
TRUE	FALSE	FALSE	
FALSE	TRUE	TRUE	
FALSE	TRUE	FALSE	
FALSE	FALSE	TRUE	
FALSE	FALSE	FALSE	

А	В	C	$A \lor (B \lor C)$
TRUE	TRUE	TRUE	TRUE
TRUE	TRUE	FALSE	TRUE
TRUE	FALSE	TRUE	TRUE
TRUE	FALSE	FALSE	TRUE
FALSE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	TRUE
FALSE	FALSE	TRUE	TRUE
FALSE	FALSE	FALSE	FALSE

А	В	C	$(A \lor B) \lor C$
TRUE	TRUE	TRUE	TRUE
TRUE	TRUE	FALSE	TRUE
TRUE	FALSE	TRUE	TRUE
TRUE	FALSE	FALSE	TRUE
FALSE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	TRUE
FALSE	FALSE	TRUE	TRUE
FALSE	FALSE	FALSE	FALSE

Remember Arguments?

Remember Validity and Soundness?

Valid Arguments

An argument is valid just in case: the conclusion is true IF the premises are.

The premises might not actually be true, but if the were, the conclusion would be

Remember Arguments?

Remember Validity and Soundness?

Valid Arguments

An argument is valid just in case: the conclusion is true IF the premises are.

The premises might not actually be true, but if the were, the conclusion would be

Sound Arguments

An argument sound just in case it is valid and its premises in fact are true.

Remember Arguments?

Remember Validity and Soundness?

Valid Arguments

An argument is valid just in case: the conclusion is true IF the premises are.

The premises might not actually be true, but if the were, the conclusion would be

Sound Arguments

An argument sound just in case it is valid and its premises in fact are true.

► Good arguments = sound arguments

Boole and Valid Arguments Holy Matrimony

 Boole's laws show how to shuffle symbols such that if you start with something true, you end up with something true:

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Boole and Valid Arguments Holy Matrimony

 Boole's laws show how to shuffle symbols such that if you start with something true, you end up with something true:

▶
$$\neg \neg A = A$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Boole and Valid Arguments Holy Matrimony

 Boole's laws show how to shuffle symbols such that if you start with something true, you end up with something true:

►
$$\neg \neg A = A$$

• $A \wedge B = B \wedge A$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Boole and Valid Arguments Holy Matrimony

Boole's laws show how to shuffle symbols such that if you start with something true, you end up with something true:

►
$$\neg \neg A = A$$

- $\blacktriangleright \ A \land B = B \land A$
- That is, his laws show how to make valid arguments!

Boole and Valid Arguments Holy Matrimony

Boole's laws show how to shuffle symbols such that if you start with something true, you end up with something true:

►
$$\neg \neg A = A$$

- $\blacktriangleright \ A \wedge B = B \wedge A$
- That is, his laws show how to make valid arguments!
- In this sense, he provides a Calculus for reasoning

Boole and Valid Arguments Holy Matrimony

Boole's laws show how to shuffle symbols such that if you start with something true, you end up with something true:

- $\blacktriangleright \ A \land B = B \land A$
- That is, his laws show how to make valid arguments!
- In this sense, he provides a Calculus for reasoning
 - Just as algebra provides a Calculus for arithmetic

Boole and Valid Arguments Holy Matrimony

- Boole's laws show how to shuffle symbols such that if you start with something true, you end up with something true:
 - ▶ ¬¬A = A
 - $\blacktriangleright \ A \land B = B \land A$
- That is, his laws show how to make valid arguments!
- In this sense, he provides a Calculus for reasoning
 - Just as algebra provides a Calculus for arithmetic
- These laws seem to provide a 'mechanical' method for reasoning correctly!

・日・ ・ ヨ・ ・ ヨ・

Outline

Introduction

Boolean Logic

Boolean Circuits

Carlotta Pavese What is a Computer?

◆□→ ◆□→ ◆三→ ◆三→

æ

Shannon's Insight

Electrifying Boole

PARALLEL

- 1. Variables are switches
- 2. Truth (1): letting current flow (closed)
- 3. Falsity (0): obstructing current (open)

< 🗇 > < 🖃 >

Shannon's Insight

Electrifying Boole

PARALLEL

- There are two binary signals:
 - 1. The on/off current after switch 1
 - 2. The on/off current after switch 2
- Lingo: Bit=binary signal. A signal is a bit if and only if it can carry one of two different messages.

Shannon's Insight Isn't Specific to Electricity: Mechanical OR

Mechanical OR:

- 4 回 2 - 4 □ 2 - 4 □

Shannon's Insight Isn't Specific to Electricity: Mechanical NOT

Mechanical NOT:

- 4 回 2 - 4 □ 2 - 4 □

æ

Shannon's Insight

Isn't Specific to Electricity: Mechanical AND Built from NOT and OR

Mechanical AND:

Shannon's Insight Isn't Specific to Electricity: Hydraulic OR

Hydraulic OR:

In Class Exercise

Becoming Bit Crunchers

The Exercise

By passing 'bits', and reacting like Boolean Circuits, arrange into a single circuit that corresponds to the following Boolean formula?

 $\begin{array}{l} (A \wedge B) \lor C. \\ (A \lor B) \wedge C. \\ (A \lor B) \wedge (C \wedge D) \end{array}$

Where Are We?

What does this all mean?

 Boolean logic, and Shannon's physical implementation of it, gives us an idea of how a functionalist analysis of thoughts might look

・ 同 ト ・ 三 ト ・ 三 ト

æ

Where Are We?

What does this all mean?

- Boolean logic, and Shannon's physical implementation of it, gives us an idea of how a functionalist analysis of thoughts might look
- Boolean logic also expresses laws of thought:

< 同 > < 臣 > < 臣 >

Where Are We?

What does this all mean?

- Boolean logic, and Shannon's physical implementation of it, gives us an idea of how a functionalist analysis of thoughts might look
- Boolean logic also expresses laws of thought:
 - Which thoughts follow logically from a given collection of thoughts

Where Are We?

What does this all mean?

- Boolean logic, and Shannon's physical implementation of it, gives us an idea of how a functionalist analysis of thoughts might look
- Boolean logic also expresses laws of thought:
 - Which thoughts follow logically from a given collection of thoughts
- So, a machine can be built that follows these laws

・ 同 ト ・ 三 ト ・ 三 ト

Where Are We?

What does this all mean?

- Boolean logic, and Shannon's physical implementation of it, gives us an idea of how a functionalist analysis of thoughts might look
- Boolean logic also expresses laws of thought:
 - Which thoughts follow logically from a given collection of thoughts
- ► So, a machine can be built that follows these laws
- If we equate thinking with following these laws, we have a characterization of thought that is medium-independent: electric, mechanical, hydraulic

(4回) (4回) (4回)

Where Are We?

What does this all mean?

- Boolean logic, and Shannon's physical implementation of it, gives us an idea of how a functionalist analysis of thoughts might look
- Boolean logic also expresses laws of thought:
 - Which thoughts follow logically from a given collection of thoughts
- So, a machine can be built that follows these laws
- If we equate thinking with following these laws, we have a characterization of thought that is medium-independent: electric, mechanical, hydraulic
- ► No Chauvinsm, but perfectly physical!

・ロン ・回と ・ ヨン

Where Are We Going? Questions

1. Does Boolean logic express ALL laws of thought?

Carlotta Pavese What is a Computer?

- 4 回 2 - 4 □ 2 - 4 □

æ
Where Are We Going? Questions

- 1. Does Boolean logic express ALL laws of thought?
- 2. Can any logical claim be expressed in Boolean logic?

・ 同 ト ・ 三 ト ・ 三 ト

æ

Where Are We Going? Questions

- 1. Does Boolean logic express ALL laws of thought?
- 2. Can any logical claim be expressed in Boolean logic?
- 3. Are there any mechanisms that can't be built out of Boolean circuits?

Where Are We Going? Questions

- 1. Does Boolean logic express ALL laws of thought?
- 2. Can any logical claim be expressed in Boolean logic?
- 3. Are there any mechanisms that can't be built out of Boolean circuits?
- 4. Is a computer just a bunch of Boolean circuits?

Where Are We Going? Questions

- 1. Does Boolean logic express ALL laws of thought?
- 2. Can any logical claim be expressed in Boolean logic?
- 3. Are there any mechanisms that can't be built out of Boolean circuits?
- 4. Is a computer just a bunch of Boolean circuits?
- 5. How could a computer be flexible in what it does?

Where Are We Going? Questions

- 1. Does Boolean logic express ALL laws of thought?
- 2. Can any logical claim be expressed in Boolean logic?
- 3. Are there any mechanisms that can't be built out of Boolean circuits?
- 4. Is a computer just a bunch of Boolean circuits?
- 5. How could a computer be flexible in what it does?
- 6. What exactly can a computer do?

► Ch.2 of The Pattern on the Stone

Carlotta Pavese What is a Computer?

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ